This work has been supported by a grant from the BMFT (Bonn, Germany). We thank Mrs Kirsten Huschke for typing the manuscript.

References

ANACKER, E. W. (1958). J. Phys. Chem. 62, 41-45.

- ANACKER, E. W. & GHOSE, H. M. (1968). J. Am. Chem. Soc. 90, 3161-3166.
- BEURSKENS, P. T. (1984). *DIRDIF*. Tech. Rep. 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- CAMPANELLI, A. R. & SCARAMUZZA, L. (1986). Acta Cryst. C42, 1380–1383.
- CLANCY, S. F., TANNER, D. A., THIES, M. & PARADIES, H. H. (1992). ACS Symp. San Francisco Ext. Abstr. Div. Environ. Chem. 321, 907–908.
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42-46.

- JEFFREY, G. A. (1986). Acc. Chem. Res. 19, 168-173.
- MATHISEN, H., NORMAN, N. & PEDERSEN, B. F. (1967). Acta Chem. Scand. 21, 127-133.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
- NYBURG, S. C. & LÜTH, H. (1972). Acta Cryst. B28, 2992-2995.
- PARADIES, H. H. (1989). Surfactants in Solution, Vol. 7, edited by K. L. MITTAL, p. 559. London: Plenum Press.
- PARADIES, H. H. (1991). 65th Colloid Surf. Sci. Symp. ACS Abstr. 134.
- PARADIES, H. H. & SCHRÖER, U. (1988). Pharm. Ind. 12, 1387-1397.
- TAGA, T., MACHIDA, K., KIMURA, N., HAYASHI, S., UMEMURA, J. & TAKENAKA, T. (1986). *Acta Cryst.* C42, 608–610.
- TAGA, T., MACHIDA, K., KIMURA, N., HAYASHI, S., UMEMURA, J. & TAKENAKA, T. (1987). Acta Cryst. C43, 1204–1206.
- WARD, D. L., RHINEBARGER, R. R. & POPOV, A. I. (1986). Acta Cryst. C42, 1771-1773.

Acta Cryst. (1993). C49, 747–749

Structure of 5-Benzoyl-1-[4-(dimethylamino)phenylmethyleneamino]-4-phenyl-1*H*pyrimidin-2-one

By Mehmet Akkurt*

Department of Physics, Faculty of Arts and Sciences, Erciyes University, TR-38039 Kayseri, Turkey

AND WOLFGANG HILLER[†]

Institut für Anorganische Chemie der Universitaet Tübingen, Auf der Morgenstelle 18, W-7400 Tübingen, Germany

(Received 10 January 1992; accepted 20 July 1992)

Abstract. $C_{26}H_{22}N_4O_2$, $M_r = 422.485$, monoclinic, $P2_1/c$, a = 9.564 (2), b = 11.305 (1), c = 20.389 (3) Å, $\beta = 91.27$ (1)°, V = 2203.95 Å³, Z = 4, $D_x =$ 1.273 g cm⁻³, λ (Cu $K\alpha$) = 1.54184 Å, $\mu = 6.3$ cm⁻¹, F(000) = 888, T = 295 K, R = 0.050 for 2816 observed reflections. The pyrimidine ring is significantly non-planar, the angles between the planes of atoms N1, C6, C5 and C2, N3, C4 (using standard numbering for pyrimidines) is 7.5°. In 1-amino-5benzoyl-4-phenyl-1*H*-pyrimidine-2-thione, the corresponding angle is 0.74°.

Introduction. The pyrimidines are effective in antibacterial and insecticidal action (Cheng, 1969; McNair-Scott, Ulbricht, Rogers, Chu & Rose, 1959; Sankyo Co. Ltd & Ube Industries Ltd, 1984; Ziegler,

Experimental. An equimolar mixture of 4-benzoyl-5 phenyl-2,3-furandione and 4-(dimethylamino)benz aldehyde semicarbazone (2) was heated at 388 K for

dırım, Elerman & Soylu, 1991).

15 min. The mixture was cooled to room temperature, and the product (3) extracted with ether (Saripinar, 1988). Yellow parallelepiped transparent

Eder, Belegratis & Prewedorakis, 1967; Akçamur,

Altural, Saripinar, Kollenz, Kappe, Peters, Peters &

von Schnering, 1988; Özbey, Kendi, Akçamur, Yıl-

© 1993 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

[†] Present address: Institute for Inorganic Chemistry, Technical University of München, Lichtenbergstrasse 4, D-8046 Garching, Germany.

Table 1. Atomic coordinates and equivalent isotropic Table 2. Bond lengths (Å) and angles (°) with e.s.d.'s temperature factors $(Å^2)$ with e.s.d.'s in parentheses

in parentheses

$B_{\rm eq} = (4$	$(4/3)[a^2B_{11} +$	$b^2 B_{22} + c^2 B_{33}$	$a + ab(\cos\gamma)B_{12} + ac(\alpha)$	$\cos\beta B_{13}$	N1-C2	1.424 (5)	C71—C72	1.395 (5)
$+ bc(\cos\alpha)B_{23}$].					N1-C6	1.345 (6)	C72C73	1.391 (6)
		,	, 253		N1N8	1.421 (4)	C73-C74	1.382 (7)
	x	v	Z	Bea	C2—O2	1.220 (5)	C74—C75	1.383 (8)
02	0.1538 (4)	0 2592 (3)	0.0152 (2)	5 53 (8)	C2—N3	1.367 (5)	C75—C76	1.378 (6)
07	0.5450 (3)	-0.1292(3)	-0.0780(2)	3 94 (6)	N3-C4	1.325 (5)	C76-C71	1.396 (6)
NI	0.1844 (3)	0.0583 (3)	0.0185 (2)	2.95 (6)	C4—C5	1.429 (6)	N8—C9	1.290 (5)
N3	0.2892 (4)	0.1761 (3)	-0.0633(2)	3 64 (7)	C4—C41	1.488 (6)	C9-C91	1.454 (6)
N8	0.0978 (3)	0.0413 (3)	0.0735 (2)	3.47 (7)	C41-C42	1.391 (7)	C91-C92	1.389 (6)
N10	-0.1359(4)	0.0790 (4)	0.3662 (2)	4 60 (9)	C42—C43	1.382 (8)	C92—C93	1.377 (6)
C2	0.2065 (5)	0.1721 (4)	-0.0093(2)	3 65 (9)	C43—C44	1.380 (9)	C93—C94	1.409 (6)
C4	0.3533 (4)	0.0804 (4)	-0.0849(2)	3.00 (8)	C44—C45	1.389 (9)	C94—C95	1.405 (6)
C5	0.3334 (4)	-0.0336(3)	-0.0564(2)	2 60 (7)	C45C46	1.386 (7)	C95—C96	1.369 (7)
C6	0.2431 (4)	- 0.0406 (4)	-0.0053(2)	2.82 (8)	C46-C41	1.406 (6)	C96-C91	1.396 (6)
C7	0.4188 (4)	-0.1395(4)	-0.0706(2)	2.69 (7)	C5C6	1.371 (5)	N10-C94	1.375 (5)
C9	0.1393 (4)	0.1022 (4)	0 1237 (2)	3 22 (8)	C5C7	1.482 (5)	N10-C11	1.483 (7)
C11	-0.1075(7)	0.1702 (6)	04171 (3)	70(2)	C7—07	1.225 (4)	N10-C12	1.465 (8)
C12	-0.2386(6)	-0.0131(6)	0 3799 (3)	59(1)	C7-C71	1.481 (5)		• • •
C41	0.4447 (4)	0.0988 (4)	-0.1421(2)	3 46 (9)				
C42	0.5241 (6)	0.2015 (5)	-0.1463(3)	5.3 (1)	C2N1C6	122.6 (3)	C42C41C46	118.7 (5)
C43	0.6133 (6)	0.2184 (5)	-0.1979(3)	68(1)	C2N1N8	122.1 (3)	C41-C42-C43	120.6 (5)
C44	0.6237 (6)	0.1337 (6)	-0.2462 (3)	68(1)	C6N1N8	115.3 (3)	C42-C43-C44	120.2 (5)
C45	0.5446 (6)	0.0309 (5)	-0.2437(2)	5 5 (1)	N1C2O2	119.9 (4)	C43—C44—C45	120.4 (5)
C46	0.4554 (5)	0.0134 (4)	-0.1919(2)	4.2 (1)	N1-C2-N3	116.4 (4)	C44—C45—C46	119.5 (5)
C71	0.3514 (4)	-0.2574 (3)	-0.0735(2)	2.56 (7)	O2-C2-N3	123.7 (5)	C41-C46-C45	120.6 (5)
C72	0.2094 (4)	-0.2715 (4)	-0.0887(2)	3.33 (8)	02C2NI	119.9 (4)	C7-C71-C72	122.2 (3)
C73	0.1531 (5)	- 0.3847 (4)	-0.0935(2)	4.6 (1)	C2-N3-C4	121.3 (4)	C7-C71-C76	118.3 (3)
C74	0.2367 (6)	- 0.4828 (4)	-0.0828(3)	5.0 (1)	N3-C4-C5	122.3 (3)	C72-C71-C76	119.5 (4)
C75	0.3774 (5)	- 0.4687 (4)	-0.0675(2)	4.6 (1)	N3-C4-C41	115.7 (4)	C71-C72-C73	119.7 (4)
C76	0.4348 (5)	-0.3571(4)	-0.0629(2)	3.80 (9)	C5-C4-C41	122.1 (4)	C72-C73-C74	120.4 (4)
C91	0.0663 (4)	0.0935 (4)	0.1853 (2)	2.97 (8)	C4C5C6	117.0 (3)	C73-C74C75	120.0 (4)
C92	0.1067 (5)	0.1667 (4)	0.2371 (2)	4.1 (1)	C4—C5—C7	124.8 (3)	C74—C75—C76	120.3 (4)
C93	0.0417 (5)	0.1637 (4)	0.2966 (2)	4.4 (1)	C6—C5—C7	117.5 (3)	C75-C76-C71	120.2 (5)
C94	-0.0685 (4)	0.0837 (4)	0.3073 (2)	3.33 (8)	NIC6C5	120.0 (4)	C9-C91C96	123.7 (4)
C95	-0.1064 (4)	0.0077 (4)	0.2554 (2)	3.72 (9)	C5C7O7	119.8 (4)	C9-C91-C92	119.1 (4)
C96	-0.0420 (4)	0.0135 (4)	0.1962 (2)	3.53 (9)	C5C7C71	119.6 (4)	C9-C91-C96	123.7 (4)
					O7C7C71	120.6 (3)	C92-C91-C96	117.4 (4)
					N1—N8—C9	112.3 (3)	C91-C92-C93	122.1 (4)
					N8C9C91	120.3 (4)	C92—C93—C94	120.4 (4)
crystale	were rea	horillized	from n-butanol	by close	C11-N10-C12	118.2 (5)	C93-C94-C95	117.2 (4)
er yorais		y stamzeu	nom <i>n</i> -outallol	UY SIOW	C11-N10-C94	120.2 (5)	N10-C94-C93	121 7 (4)

C12-N10-C94

C4--C41--C42 C4--C41--C46

cry evaporation at room temperature for a week; m.p. 477 K. Intensity data were collected for a crystal of $ca 0.55 \times 0.20 \times 0.10$ mm, mounted in a glass capillary on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Cu $K\alpha$ radiation. Unit-cell parameters were obtained from 25 reflections with 17 $\leq \theta \leq 24^{\circ}$. Intensity data were collected in ω/θ scan mode with $6 \le \theta \le 65^\circ$; $0 \le h \le 9$, $0 \le k \le 14$, $0 \le l \le 14$ 14. Two standard reflections (054 and 344), measured every hour, showed no intensity variation. R_{int} = 0.0135. A total of 4217 reflections with $I \ge 3\sigma(I)$ were considered observed. Data were corrected for Lorentz-polarization effects, but not for absorption. The structure was solved by direct methods (SHELXS86; Sheldrick, 1986) and refined by fullmatrix least squares on F (SHELX76; Sheldrick, 1976) including anisotropic thermal parameters for non-H atoms. H atoms were geometrically positioned 1.0 Å from C atoms with $B = 0.05 \text{ Å}^2$. 290 parameters were refined. $R = wR = 0.050 \ (w = 1/\sigma_F^2)$. In the last cycle, $(\Delta/\sigma)_{\text{max}} = 0.001$. Maximum residual density was 0.17, minimum $-0.14 \text{ e} \text{ Å}^{-3}$. S =1.026. Scattering factors for neutral atoms and f'and f'' were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). Computer programs used: Enraf-Nonius SDP package (B. A. Frenz & Associates, Inc., 1985), SHELX76 (Sheldrick, 1976), SHELXS86 (Sheldrick, 1986);

SCHAKAL (Keller, 1988). Computer used: DEC MicroVAX 3500.

05-

N10-C94-C95

C94-C95-C96

-C96-C91

121.5 (4)

119.7 (4)

121.6 (4)

121.2 (4)

121.4 (4)

121.4 (5)

Discussion. Atomic positions and equivalent isotropic temperature factors for non-H atoms are listed in Table 1.* Bond lengths and angles are given in Table 2. The structure of the title compound is shown in Fig. 1. The formula suggested on the basis of NMR and IR spectroscopy is confirmed. It is interesting to note the relative orientations of the substituents attached to the pyrimidine ring. In the pyrimidine ring, the C2=O2 double-bond length of 1.220 (5) Å, and in the benzoyl group, the C7=O7 double-bond length of 1.225 (4) Å are almost the same as that found for the C=O bond [1.222 (3) Å] in 1-amino-5-benzoyl-4-phenyl-1H-pyrimidine-2thione (Akkurt, Güldeste, Soylu, Altural & Sari-

^{*} Lists of anisotropic thermal parameters, positional and thermal parameters for the H atoms, bond distances and angles involving the H atoms and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55754 (30 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1001]

Fig. 1. A SCHAKAL (Keller, 1988) drawing of the title molecule with the atom-numbering scheme.

pinar, 1992). The N3—C2 and N1—C6 bond distances are respectively 1.367 (5) and 1.345 (6) Å, which are exceptional compared with the above compound [1.357 (3) and 1.332 (3) Å] and with 5-benzoyl-1-methyl-4-phenylpyrimidine-2-thione [1.385 (4) and 1.316 (4) Å (Özbey *et al.*, 1991)]. In the pyrimidine ring, the angle between the planes N1,C6,C5 and C2,N3,C4 is 7.5°; this angle appears sensitive to the type of substituents present on N(1) since in 5-benzoyl-1-(diphenylmethyleneamino)-4phenyl-1*H*-pyrimidine-2-one it is 5.3° (Akçamur *et* *al.*, 1988) and in 1-amino-5-benzoyl-4-phenyl-1*H*-pyrimidine-2-thione it is 0.74° (Akkurt *et al.*, 1992).

We thank The Scientific and Technical Research Council of Turkey for a research grant (MA). We are also grateful to Professor Dr J. Straehle, Universitaet Tübingen (Germany), for providing the laboratory facilities and to Dr E. Sarıpınar and Professor Dr Y. Akçamur for the crystals.

References

- AKÇAMUR, Y., ALTURAL, B., SARIPINAR, E., KOLLENZ, G., KAPPE, O., PETERS, K., PETERS, E. M. & VON SCHNERING, H. G. (1988). J. Heterocycl. Chem. 25, 1419–1422.
- AKKURT, M., GÜLDESTE, A., SOYLU, H., ALTURAL, B. & SARIPINAR, E. (1991). Acta Cryst. C47, 315-317.
- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands.
- CHENG, C. C. (1969). Prog. Med. Chem. pp. 67-70.
- KELLER, E. (1988). SCHAKAL88. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
- McNAIR-SCOTT, D. B., ULBRICHT, T. L. V., ROGERS, M. L., CHU, E. & ROSE, C. (1959). *Cancer Res.* pp. 15–19.
- ÖZBEY, S., KENDI, E., AKÇAMUR, Y., YILDIRIM, İ., ELERMAN, Y. & SOYLU, H. (1991). Acta Cryst. C47, 1105-1106.
- Sankyo Co. Ltd & Ube Industries Ltd (1984). Chem. Abstr. 101, 1109392; Jpn. Patent 59/36 667 (84/36 667).
- SARIPINAR, E. (1990). PhD Thesis, Erciyes Univ., Kayseri, Turkey.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- ZIEGLER, E., EDER, M., BELEGRATIS, C. & PREWEDORAKIS, E. (1967). Monatsh. Chem. 98, 2249–2253.

SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors [Acta Cryst. (1985). C41, 1–4].

Acta Cryst. (1993). C49, 749-751

Structures of Trimethyloxosulfonium Salts. VII. The Dichromate: [(CH₃)₃SO]₂Cr₂O₇

BY MICHEL JANNIN, RENÉ PUGET, CHRISTINE DE BRAUER AND RENÉ PERRET

Laboratoire de Physique du Solide, associé au CNRS (URA 785), Université de Bourgogne, BP 138, 21004 Dijon CEDEX, France

(Received 1 June 1991; accepted 22 July 1992)

Abstract. Trimethyloxosulfonium dichromate, C₃H₉OS⁺.Cr₂O₇⁻, M_r = 402.32, monoclinic, $P2_1$, a = 8.917 (2), b = 10.319 (2), c = 8.418 (1) Å, β = 102.30 (5)°, V = 756.8 (6) Å³, Z = 2, $D_m = 1.75$ (3), $D_x = 1.765 \text{ Mg m}^{-3}$, $\lambda (\text{Mo } K\alpha) = 0.71073 \text{ Å}$, $\mu = 1.698 \text{ mm}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ mm}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ mm}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ mm}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ mm}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ mm}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ m}^{-1}$, F(000) = 412, T = 293 K, final $R = 1.698 \text{ m}^{-1}$, $F(000) = 1.698 \text{ m}^{-1}$,

0108-2701/93/040749-03\$06.00 © 1993 Interna

© 1993 International Union of Crystallography